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Fault Management is a vital issue for any network operator since the beginning of the
telecommunications era. As networks have become more and more complex, their
management systems are crucial for any operator company. In this ecosystem, the
Software-Defined Networking (SDN) approach has appeared as a possible solution
for different networking issues. The flexibility provided by SDN to the network man-
agement enables a great dynamism in the configuration of network devices. However,
this feature introduces the cost of a potential increase in failures since every mod-
ification introduced on the control plane is a new possibility for failures to appear
and cause a decrement of the quality for offered services. Because of the growing
pace of the networks, the classical approach is not feasible to cope that dynamism.
Increasing the number of human operators in charge of the fault management pro-
cess would increase the operation cost dramatically. Thus, this paper presents an
approach to apply machine learning over a big data framework for an autonomous
fault management process in SDN networks. In this paper, we present a Semantic
Data Lake framework for a self-diagnosis service which is deployed on top of an
SDN management platform. Also, we have developed a prototype of the proposed
service with different diagnosis models for SDN networks. Models and algorithms
have been evaluated showing good results.
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1 INTRODUCTION

Nowadays, one of the problems which have more impact on network operation is the traffic volume of the telecommunication
networks1. The massive amount of data that networks have to transport is caused by the growing number of devices in our daily
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life2, by the adoption of new networking technologies and services3, such as 5G or high-quality video streaming, or by the
changes in the computational paradigm4, i.e., cloud computing.
Flexible routing policies are needed to face the dilemma of unclogging computer networks in such a hostile environment

traffic-wise5. To increase flexibility in computer networks, the use of Software-Defined Networking (SDN) technologies pro-
vides levels of flexibility never reached before6, allowing the quickly modifying of routing policies according to such factors as
traffic load or pre-defined rules.
Due to this advantage, the network industry is promoting the adoption of SDN. One of the main points in the strategic agenda

of major companies heavily reliant on computer networks (such as telcos or Multiple Service Operators (MSO)) is the adoption
and implementation of SDN technologies7. Indeed, more than 80% of Cloud Service Providers (CSP) network executives rank
as "significant" the potential impact of the adoption of Network Function Virtualization (NFV) and SDN technologies in the
operational model, and more than 50% of them are preparing investments for the migration to SDN in their data centers and
mobile cores8. Furthermore, there is an expected growth at a Compound Annual Growth Rate (CAGR) of 71.4% in the 2017-
2022 period in the SDN and NFV market, therefore reaching a market value of USD 54.41 billion9.
Nevertheless, the advantages that SDN brings to the network environment, it also has some issues of resiliency. Since dynamic

management involves constant changes in networking policies, there are numerous chances for the designing of faulty routing
policies or failures regarding the implementation of such rules. Therefore, a system that audits these changes and diagnoses such
failures is needed to avoid the possibility of inhibiting the benefits of adopting SDN technologies. This need is the motivation
for the system proposed in this paper.
Since this system relies heavily on the collecting and processing of data, the use of semantic technology can significantly

increase flexibility in the treatment of such data. It also allows us to ease interaction among different systems since two sys-
tems need to share their data models to adapt their data mining processes and be compatible with each other. Furthermore,
the definition of ontologies for the data representation within common models facilitates the interaction with an ever-growing
Semantic Web using standards as Resource Description Framework (RDF).
A previous work of the architecture presented in this paper was introduced at the 2018 Fifth International Conference on

Software Defined Systems (SDS)10. In this paper, we include a semantic layer to enable the autonomous diagnosis process by an
intelligent agent. We have developed several ontologies for the data description and the diagnosis process of our SDN scenario.
We have also created an orchestration system that coordinates each process according to a diagnosis model for SDN networks.
This paper is structured as follows. Section 2, introduces related works in the field of failure management in SDN environ-

ments. Section 3 proposes an architecture for a Semantic Data Lake for Fault Management. Section 4 describes the semantic
knowledge models used in the diagnosis process. In Section 5, we define a worked example to show the application of the seman-
tic models. Later, Section 6 shows the results of the evaluation of the diagnosis module. Finally, Section 7 summarises some
conclusions and explore possible paths for future work.

2 RELATED WORK

Autonomic Networking is a crucial concept of the Future Internet11, and different approaches have been explored for traditional
telecommunication networks, both centralized12 or distributed13,14 approaches. However, in recent years, some reference models
have been generated by ETSI and IRTF, such as Generic Autonomic Networking Architecture (GANA)15 or RFC 757516 and
RFC 757617, to build a common architecture for the next-generation networks. Moreover, SDN offers some attractive advantages
to be used as a fault-aware element for some critical points for next-generation networks, such as Big Data18 and smart grid
infrastructures19 or dynamic bandwidth management for data centers20.
Software-Defined Networking (SDN) offers some key capabilities to enable autonomic network management, and the com-

munity has explored different approaches21,22. An extension of the OpenFlow protocol23, named "OpenState"24, introduces state
machines into the switches for triggering transitions at the packet-level event which promotes a quick solution to node or link
failures. This approach delegates some actions to network devices, but other approaches proposes recovery methods centralized
in the network controller25.
An agent-based solution is applied in SDN-RADAR26. Those agents act as probes when bad performance is detected in a

specific service consumed by the client. Tang et al.27 propose a system mapping by combining the network topology with the
“Policy View” of each service. Using this combined view and an SDN reference model, a belief network is built for each service
and is used to reason about the fault location.
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FIGURE 1 Overview of the proposed Fault Diagnosis Architecture.

A different method is proposed by Chandrasekaran and Benson28, considering SDN application failures instead of link/nodes
ones. To achieve fault tolerance for SDN applications, a new isolating layer, called “AppVisor”, is defined between applications
and SDN controller. It also defines amodule which enables network transforming transactions between application and controller
to be atomic and invertible.
Another approach which covers different network levels is the self-healing architecture proposed by Sánchez et al.29. This

proposal includes monitorization of data level, control level, and service level, offering a global view of the problem. Moreover,
this architecture proposes the application of self-modeling techniques for the generation of fault diagnosis models. Our proposal
focuses more on the network behavior than in the topology itself to complement this approach, as described below. We extend a
previous approach for Fault Diagnosis of non-SDN Telecommunication Networks30 which combines the application of intelli-
gent techniques with semantic modeling31. In this paper, we present an extension for the models used in the previous approach
to extend them for an SDN environment.

3 SEMANTIC DATA LAKE ARCHITECTURE FOR FAULT MANAGEMENT

This section presents a Semantic Data Lake Architecture for Fault Management based on Bayesian Reasoning for SDN Envi-
ronments. Figure 1 shows an overview of the architecture which is based on a Data Lake Architecture which ingests data from
different sources, being the SDN controller one of them. Section 3.1 presents the Data Layer, which contains all data sources.
Section 3.2 introduces the Storage Layer, which raw data is collected and, later, processed in the Processing Module, shown in
Section 3.3. Finally, Section 3.4 explains the features of the Diagnosis Semantic Orchestrator, which is the module responsible
for carrying out the Fault Diagnosis process through its different stages.
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3.1 Data Layer
The proposed architecture is based on a standard Data Lake architecture32 where data come from different sources. In our
scenario, the most critical data source is the network controller which performs management tasks over the devices. Moreover,
the SDN controller provides useful detailed information about the status of every network element.
Using the northbound Application Programming Interface (API) of the SDN controller, we can collect data via simple

Representational State Transfer (REST) request. However, even inside this significant data source, i.e., the network controller,
we find several essential data sources about different aspects of the network, such as topology or traffic.

3.2 Storage Layer
This layer is responsible for ingesting all data sources in the data lake in raw format. Later, data are processed and enriched
with semantic models. That ingestion is carried out by connectors. Every connector is responsible for collecting and pushing
data from a specific data source in the data lake. Here, we have different strategies: streaming or periodic ingestion. If the data
source generates valuable data for our system, real-time ingestion using streaming techniques in the connector implementation
must be done. However, if the information from the data source is static, or at least, not real-time required, the connector can be
implemented as a periodic data collector.

3.3 Processing Module
This module is responsible for analyzing and processing all data coming from data sources, which is stored in Data Lake. For that
purpose, the usage of Big Data platforms, such as ElasticSearch33, is required for indexing and classifying high data volumes
for further processing. That indexation is highly desirable for the conversion from raw data to enriched semantic data.
Thus, we enrich raw data in the Semantic Converter Module, which use semantic models, proposed in Section 4, to represent

all relevant data for the Fault Management process.
After semantic models have been applied for representing both network and diagnosis, a module is created for tagging data

according to these models. This mapping is implemented separately for each data source within the Data Lake. The annotated
data resulting from such mapping can be stored in any RDF storage system, such as Apache Fuseki34, which allows for the
retrieval of RDF triples through semantic queries.
Summarising, we propose the following features for this module. Based on data collected from the SDN environment, we

process and enrich those data with semantic models and select specific symptoms that can suggest a type of fault. Some of them
need further processing, such as time series analysis, ontology-based reasoning or other variables can be directly discretized,
assigning a class depending on the range that contains the value. Finally, processed data is converted to an adequate format to
generate diagnosis models or to infer the most probable cause of fault using causal models.

3.4 Diagnosis Semantic Orchestrator
In the designing of fault diagnosis task, we have followed the B2D2 Diagnosis Model30 (further explained in Section 4.1),
which proposes the division of diagnosis process into three phases: Symptom Detection, Hypothesis Generation and Hypothesis
Discrimination.
Consequently, the execution of the diagnosis service starts in the processing module, where the task of Symptom Detection

is performed. This task consists of comparing features in the data collected with expected values extracted from historical data
if available. Depending on the result obtained from this comparison, the diagnosis service either saves the observation and
continues the search for symptoms in new entries or appends the symptom detected.
Once a symptom has been detected, the reasoning process for hypothesis generation and discrimination is carried out in this

module inferring with data provided by the processing module presented in Section 3.3 and the symptom appended. Multiple
reasoning techniques can be used for this task. For instance, rule-based reasoning provides a straightforward method to express
domain knowledge. That knowledge can be represented as rules expressing cause-effect relationships. However, it is incapable
of dealing with situations uncovered by those rules. Another alternative is the application of probabilistic reasoning techniques.
Specifically, causal models based on Bayesian reasoning are interesting for our uncertain and complex environment. They make
a heuristic model that relates symptoms and cause of a fault, obtaining the probability of a failure based on those observed
variables. Thus, we apply Bayesian networks as causal models for fault root cause inference models. Mainly, in the Hypothesis
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Generation phase, Bayesianmodels are used to infer a set of possible faults according to the observationsmade and the symptoms
detected.
Having both a set of hypotheses and symptoms detected, we reach the third and last phase of the diagnosis process as defined

by the B2D2 Diagnosis Model: the Hypothesis Discrimination phase. To obtain a final diagnosis over the set of hypothesis used
as input, we define a time window in which we perform additional Symptom Detection tasks. This allows us to obtain new sets of
hypotheses with probabilities defined for each of the possible faults. Then, we recursively examine if each probability is over a
defined threshold: if it is, we reach a final result for the diagnosis; otherwise, we execute test actions over the monitored network
to update the probabilities of hypothesis set.
This process needs to be executed sequentially for each new entry of data. To achieve this, we create a Diagnosis Semantic

Orchestrator, which uses the knowledge models explained in Section 4.

4 SEMANTIC MODELLING FOR FAULT MANAGEMENT IN SDN

The proposed architecture is based on a previous work focused on Fault Management in traditional telecommunication net-
works30. That work proposed the BDI for Bayesian Diagnosis (B2D2) model as a knowledge model for the definition of domain
knowledge and inference knowledge which allows an intelligent agent to carry out autonomously the fault diagnosis process.
This B2D2 Knowledge Model is briefly presented in Section 4.1. The proposed description language for the SDN scenario is
presented in Section 4.2, and a specific Diagnosis Model for our scenario is presented in Section 4.3.

4.1 An overview of the B2D2 Knowledge Model
A knowledge model is composed of different models, each capturing a related group of knowledge structures. Those models
describe different aspects of a specific problem to enable the development of a solution to solve it. This section presents an
overview of the B2D2 Knowledge Model which relates a set of models which enables an agent to carry out an autonomous
diagnosis process, as summarized in Figure 2. Those knowledge models are divided into two main areas: Domain Model and
Inference Model. The Domain Model used to describe the domain knowledge, in our case, fault diagnosis of telecommunication
networks. The Inference Model is used to define the tasks required to carry out a diagnosis process.

B2D2 Knowledge Model

Domain Model Inference Model

Structural
Model 

Causal
Model 

Diagnosis
Model 

Task
Model 

applies

infers with

reasons with

FIGURE 2 Overview of the B2D2 Knowledge Model.

The Domain Model describes the main static information and knowledge in an application domain, in our case, the fault
diagnosis task for telecommunication networks. This section exposes two types of domain models which offer complementary
views of the domain knowledge. Those models must be instantiated by agents with their knowledge bases which must contain
information about specific networks they are diagnosing. The Structural Model contains knowledge about the network. In this
paper, we use the Software-Defined Networking Description Language (SDNDL), presented in Section 4.2, as the language
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to represent this type of knowledge. The Causal Model relates the symptoms with possible fault root causes while handling
uncertainty using Bayesian networks. This model uses an existing language published as PR-OWL† ontology35.
The Inference Model describes how domain knowledge can be applied to carry out the reasoning process. The Task Model

defines the different phases of a diagnosis process and proposes several solving methods to perform it. This model is based
on the analysis exposed by Benjamins36. The Diagnosis Model combines Structural and Causal Models to allow an agent to
autonomously handle that knowledge during the different phases of the diagnosis process defined by the Task Model. In this
paper, we propose an extension of the Diagnosis Model30 for our SDN scenario in Section 4.3.

4.2 SDN Description Language
In this section, a semantic model for the definition of SDN and OpenFlow environments, called Software-Defined Networking
Description Language (SDNDL)‡, is proposed to provide descriptions that are independent of the technologies or platforms
used. In our work, this language is used to implement the Structural Model of the B2D2 Knowledge Model commented in the
previous section.
The proposed semantic model extends Infrastructure and Network Description Language (INDL)37 and Network Markup

Language (NML)38 for the description of network inventory. These models offer a set of core classes useful to describe any
telecommunication network. Specifically, the main class proposed in NML is the Network Object, which is an abstract concept
that includes any type of element present at the data plane of an SDN network. To specify a Network Object element, we can
use a set of subclasses (such as Port, Node or Service) to refine these elements further. The NML also defines a Topology class
to include the concept of a network domain. Topology class represents the grouping of multiple Network Object elements along
with relations among them (Links).
This semantic model is well suited for mapping the data plane of an SDN network since it can represent all the elements which

compose it. However, this model does not provide any class for the mapping of elements within the control plane; therefore, an
extension for this model is needed to include the concepts and components present in the control plane. Therefore, we propose
Software-Defined Networking Description Language (SDNDL), a semantic model to describe both the control and data planes
of an SDN network. Moreover, the descriptions obtained from such language is technology-independent.
Since NML is a language well suited for describing the data plane of an SDN network, we have inherited most of its classes

for the definition of a schema which describes the data plane in SDNDL. We have used the Node concept, defined by NML, as
grounds for the representation of elements within the data plane of the SDN environment.

rdfs:isSubclassOf

sdl:hasTable

sdndl:hasInterface

sdndl:hasFlow

nml:Node

sdndl:OpenflowNode

sdndl:FlowTable sdndl:Flow

ndl:Interface

Node

Openflow Node

Flow Table

Interface

Flow

FIGURE 3 Data Plane Hierarchy

†PR-OWL Website: http://pr-owl.org/
‡SDNDL Website: http://www.gsi.upm.es/ontologies/sdndl/

http://pr-owl.org/
http://www.gsi.upm.es/ontologies/sdndl/
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As we can see in Figure 3, we create a class OpenFlow Node, which corresponds to a node which implements the OpenFlow
protocol. Since routing in OpenFlow-based nodes is based on Flow Tables, we also add a Flow Table class. We also define
a concept, sdndl:hasTable, and we link it as a property to the OpenFlow Node, to model routing policies within each node.
Since an OpenFlow Node is a switch, it has interfaces; therefore, we add the Interface ontology from the Network Description
Language (NDL) model.

Flow
sdndl:Flow

Timeout
xsd:integer

Priority
xsd:integer

Match
sdndl:Match

Flow Stats
sdndl:FlowStats

Instruction
sdndl:Instruction

Action
sdndl:Action

sdndl:hasMatch sdndl:hasInstruction sdndl:hasNetworkStats

sdndl:hasAction

FIGURE 4 Flow Concept Hierarchy

The class Flow is further developed, as we can see in Figure 4. For each flow in a flow table, instructions for routing are
injected. Therefore, we add an Instruction class to our model, which itself includes multiple fields represented with the Action
class. To mimic real flows in the SDN network, we add the Timeout, Priority,Match and Flow Stats classes. These classes cover
some initial concepts defined by the current versions of the OpenFlow protocol for the sake of generality of the model since
covering all concepts defined by current OpenFlow versions creates a Flow model that could become easily obsolete by new
OpenFlow releases.
The semantic hierarchies previously described allow us for the description of the data plane of SDN networks. However,

our semantic model currently lacks classes and relations for the control plane description. Therefore, we create a control plane
hierarchy that can be seen in Figure 5. While designing this hierarchy of classes, the initial approach was to define the interfaces
of an SDN Controller. However, we are not interested in the inner workings of the controller, but in how it provides routing
instructions to the data plane; therefore, this hierarchy is based on the Controller class. In this model, we represent the fact that
the controller is composed of multiple services, tasked with implementing the controller functionalities.
In this model, we are specifically interested in the Network Stats class. These stats are generated by the StatsManager service.

An inherited class of Network Stats can be seen in Figure 4 (the Flow Stats class).

4.3 A Diagnosis Model for SDN scenarios
This section presents an extension for the generic B2D2 Diagnosis Model§ presented in previous work30. The central concept
of this model is the Diagnosis which is performed by actors that execute actions to collect observations from the monitored

§B2D2 Diagnosis Model Website: http://www.gsi.upm.es/ontologies/b2d2/diagnosis/

http://www.gsi.upm.es/ontologies/b2d2/diagnosis/
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FIGURE 5 Control Plane Hierarchy

network. From these observations, a set of hypotheses is generated and discriminated until a conclusionwith enough confidence
is reached. The most important concepts in the model are simplified in Figure 6.

Diagnosis
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finishes with holds detected with discriminated with repaired with

FIGURE 6 Main classes of B2D2 Diagnosis Model30.

Extending that generic diagnosis model, we have defined symptoms in our SDN network that could interfere with the provision
of specific services. Figure 7 shows the concept Symptom, defined in the B2D2 Diagnosis Model, with its corresponding defined
sub-classes.
Moreover, we have defined the other need to complete the Causal Model, the possible faults. Figure 8 shows a fault hierarchy

introduced inheriting from the class Fault in the diagnosis model.
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FIGURE 7 Symptoms for our SDN scenario.

We have defined symptoms as evidence variables in our SDN environment, and the possible fault root causes to complete
our causal model. The causal relation among those variables is modeled with a Bayesian Network. It makes a heuristic model
that relates symptoms and fault cause, inferring a hypothesis of the most probable status of the network. This status is predicted
according to a set of Conditional Probability Tables (CPTs), where the conditional relations between pieces of evidence and the
possible faults are modeled. Finally, Probabilistic OWL (PR-OWL) language is used for describing our Bayesian networks.

5 A WORKED EXAMPLE

In this section, we have explained a detailed example to understand the ability of our system detecting failures. In this scenario,
we deploy a streaming service, in which one of the hosts streams a sample video through one of its ports, and the other host
connects to such streams. Then, we inject faults in the network to hamper the normal functioning of the streaming service.
Specifically, we modify flow rules in switches within the network, to prevent the streaming flow from reaching the client.
Faults are injected through the SDN network controller API. Precisely, we force a switch to drop every package by setting the

output node connector in every flow rule to the loopback interface. As a result, the streaming service is interrupted.
This section presents the semantic representation of network data using SDNDL language in Section 5.1, an overview of a

faulty service in Section 5.2, a brief explanation about how faults are injected into the network in Section 5.3, and, finally, a
simplified example of a diagnosis process modeled using B2D2-SDN extension in Section 5.4.

5.1 Using SDNDL for Network Data Representation
The data extracted from the network-topology module is modeled using the classes shown in Figure 9. We have the concept of
Controller (in our case Opendaylight) which has Topology. This topology is composed of Nodes (OpenFlowNodes in SDNDL)
and Links. Example data presented in this section uses JSON-LD format¶ for simplification.

Listing 1: Example of Topology Data using SDNDL.
{
"@context" : {...} ,

¶A brief view of JSON-LD format: https://json-ld.org/
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FIGURE 9 SDNDL Classes used for Topology Data.

"@id ":"1518011749" ,
"@type ":" nml:Topology",
"nml:hasNode ": [ {

"@id": "openflow33",
"@type": "sdndl:OpenFlowNode",
"ndl:hasInterface ": [...],
"ndl:connectedTo ": [...] } ...],

"nml:hasLink ": [{
"@id": "openflow10_2",
"@type": "nml:Link",
"nml:isSource ": {

"@type": "Interface",
"@id": "openflow10_2",

}, ... {...}] ,
"sdndl:hasSnapshot ":{...}
}

As an example, Figure 10 shows the hierarchy used for the status of nodes retrieved from the controller through the Openday-
light inventory module. Those data are modeled as OpenFlowNode RDF instances, each of them identified with a unique URI.
An OpenFlowNode instance has Flow Tables and Interfaces. The Flow Tables, in turn, contain the Flows entries information.

Listing 2: Example of Inventory Data using SDNDL.



FERNANDO BENAYAS ET AL 11

{
"@context" : {...} ,
"@id":" openflow33",
"@type ":" sdndl:OpenFlowNode",
"sdndl:hasSnapshot ":{},
"sdndl:hasTable ":[{ "@id ":" table0",

"@type ":" Table",
"sdndl:hasFlow ":[{" @id":" L2switch -1"," @type ":" Flow",
"sdndl:hardTimeout ":0,
"sdndl:iddleTimeout ":0,
"sdndl:hasNetworkStats ":{" @id ":"" L2switch -1# flowStats",

"@type ":" FlowStats",
"sdndl:byteCount ":25462 ,
"sdndl:packetCount ":5408} ,

"sdndl:priority ":0,
"sdndl:hasMatch ":[...] ,
"sdndl:hasInstruction ":[...]

}
"ndl:hasInterface ":[{" @id":" openflow33_2",

"@type ":" Interface",
"sdndl:hasState ":{},
"sdndl:hasNetworkStats ":{},
"sdndl:stpStatus ":" discarding "}]

}

FlowTableStats FlowTable Flow

Instruction Match

FlowStats

NodeObject

InterfaceopenflowNode

FIGURE 10 SDNDL Classes used for Inventory Data.

5.2 Streaming Service
The streaming service uses Real-time Transport Protocol (RTP) as the protocol used at the transport layer. This protocol allows
us to compensate for any jitter that could affect our transmission; it also provides detection of packet loss and out-of-order
delivery, which is prevalent within real-time transmissions in an IP network.
Correctly, the RTP protocol works as follows: first, we establish a media session using the Real Time Session Protocol (RTSP)

protocol. During the establishing of a media session, first, the client asks the streaming server which request types will the server
accept. To do this, we send an "OPTIONS" message. Once we have this information, if the media server accepts "DESCRIBE"
messages, we send a DESCRIBE message with the URL of the streaming server. Then, the server replies by sending a message
with all media initialization information for the resource that it describes.
Once we have information on the server and the data is streamed, we ask the server to send us information regarding the

transportation of the media stream. Specifically, we send a "SETUP" request in which we specify local ports for receiving RTP
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and RTP Control Protocol (RTCP) message. The server reply confirms such parameters and includes the server’s parameters.
Finally, a "PLAY" message is sent by the client, and an RTP / RTCP stream is initiated.
Now the streaming session is fully established. Data is sent from the server to the client using RTP messages, and RTCP

messages are sent periodically by both the client and the sender reporting statistics on the streaming session. Then, when the
streaming is over, RTCP messages are used to terminate the RTP transmission, and a "TEARDOWN" RTSP message is sent by
the client to terminate its session.

5.3 Fault Generation
Once the streaming scenario is established, we insert faulty configurations into the switches that define the topology, to disable
the provision of the streaming service. With this purpose, we access such configuration using the Opendaylight Northbound
API. This API provides a point of access to the Opendaylight databases, where information on traffic policies being currently
implemented in the network can be consulted and modified. Due to this feature, we are going to use the API as a channel through
which we are going to manage traffic policies and inject faults.
Once we have chosen the method for injecting faults, we look for faults that could hinder the service provisioning. Specifically,

by modifying fields in the rules associated with the streaming flow in each switch involved with the transmission, we can prevent
packets from reaching their destination. Therefore, we modify flow rules in switches involved on the transmission to simulate
the effect of faults within the network.
The Opendaylight database system is composed of two databases to manage flow rules: the operational database and the

config database. The operational database holds data on the current status of the network, including traffic policies currently
being implemented; however, this database does not allow for data modification. On the other hand, the config database doesn’t
hold any data: it accepts requests instead and pushes them into the operational database to introduce them into the network.
Therefore, to inject failures, we obtain data from the operational database, modify it, and push it into the config database. When
a flow is pushed into this database, the Forwarding Rule Manager module from the Opendaylight architecture is notified. This
module sends an Remote Procedure Call (RPC) to the OpenFlow Core Plugin module, which then sends FlowMod OpenFlow
protocol messages to the switches involved through the OpenFlow Java Driver.
Specifically, we are going to extract data representing flow rules of each switch, then we modify the fields that control the

output ports of each flow, and finally, we push them into the config database. When this change comes into effect (following the
process described in the previous paragraph) the packets of the stream are not able to reach the client of the service.

5.4 Diagnosis Process
When a fault is generated in the previous scenario, the system detects a symptom. For example, at a certain time, a node has
an unexpected change in flow from its table, and the port specified in an entry port matches rule changes to other port. If
this port number is non-existent or the interface of that port is down, the node presents a fault and begins to discard packets.
This fact triggers a diagnosis. This easy example serves as an introduction to this section where we explain how the semantic
orchestrator module boots diagnoses. The symptoms detected use the B2D2-SDN model, shown in Section 4.3, carrying out
the first necessary task for a diagnosis process. This diagnosis process performs a Monitoring Action to detect symptoms. If a
symptom is detected, a diagnosis is started. In this worked example, this fact is implemented adding a "watcher" to the symptoms
detector. For each symptom detected in the network data, a new diagnosis in the Hypothesis Generation phase starts. Listing 3
shows the diagnosis for the described phase.

Listing 3: Simplified Example of a Diagnosis Process.
@prefix b2d2 -diag: <http ://www.gsi.upm.es/ontologies/b2d2/diagnosis/ns#> .
@prefix b2d2 -sdn: <http ://www.gsi.upm.es/ontologies/b2d2/sdn/ns#> .
@prefix sdndl: <http :// www.gsi.upm.es/ontologies/sdndl/ns#> .
@prefix pr-owl: <http ://www.pr -owl.org/pr-owl.owl#> .
@prefix example: <http :// testbed/simulation2018271454_0/> .

example:diagnosis -014 a b2d2 -diag:Diagnosis ;
b2d2 -diag:hasCollectedInformation example:symptom -002 ;
b2d2 -diag:hasHypothesis example:hypotesis -03,

example:hypothesis -04 ;
b2d2 -diag:hasPerformedAction example:monitoringAction -002 ;
b2d2 -diag:isStartedBySymptom example:symptom -002 ;
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b2d2 -diag:whenHasStarted 1518011943 ;
b2d2 -diag:whenHasFinished 1518011948 .

example:symptom -002 a b2d2 -diag:Symptom ;
b2d2 -diag:collectedFrom example:openflow33 ;
b2d2 -diag:isCausalModelInput example:fd -input -001 ;
b2d2 -diag:gatheredWithAction example:monitoringAction -002 .

example:hypothesis -04 a b2d2 -diag:Hypothesis ;
b2d2 -diag:hasConfidence example:prob -hyp -04 ;
b2d2 -diag:isCausalModelOutput example:bn -var -008 ;
b2d2 -diag:representsPossibleFault example:poss -fa -004 .

example:prob -hyp -04 a pr-owl:ProbAssign ;
pr-owl:hasStateProb 0.57 .

example:poss -fa -004 a b2d2 -sdn:FlowsPrioritiesModified ,
b2d2 -diag:Fault ;

b2d2 -diag:hasLocation example:openflow33 .

When receiving this initial set of hypothesis, the diagnosis commutes to the Hypothesis Discrimination phase. In this phase,
the processed data is examined in search of more pieces of evidence, first in the switch, and then, events from the topology. For
example, a diagnosis has been started for “openflow2", the symptom is introduced in the reasoning module and the semantic
orchestrator response and release the initial report with the set of hypothesis. Then, the diagnosis module collects more symptoms
from the node and the topology in a certain time window, and again, sends this data to the reasoning module.
Finally, the semantic orchestration uses this data to generate a complete report of the diagnosis process, including the final

set of hypothesis whit an associated possible fault, the diagnosis conclusion, its beginning time (semantically whenHasStarted)
and its end time (whenHasFinished). Also, this report includes information about all the monitoring actions collected to carry
out it (in property hasCollectedInformation).

6 EVALUATION

The prototype developed for experimentation purposes has been evaluated in the same testbed as the previous work10. We
have included another machine learning algorithm which includes fast-model learning39. Then, we evaluate the quality of two
different models for switch faults using two different algorithms.
Specifically, we have created a network simulation environment in which we use Mininet40 to simulate an SDN network

composed of OpenvSwitch nodes. As shown in Figure 11, the topology is defined by an interconnected core composed of thirteen
nodes where three hosts representing servers of a datacenter are connected. Then, an access network is created at the edge of the
core. This network, which is connected to the core by a set of three parallel switches, is composed of ten nodes and five hosts
representing clients using services provided by servers from the datacenter.
Bayesian networks are used as causal models in the Hypothesis Generation and Discrimination processes. We feed the fol-

lowing information to the models shown in Figures 12-15: presence of flows (represented by existence_of_flows), changes in
the number of hosts in the network (modified_hosts), changes in the output and in ports at any flow (changed_output and
changed_inport), the detection of rules involving dropping packets with a 35020 Ethernet code (not_dropping_lldp), changes
in any timeout (modified_timeout), changes in the priority order of the flows (changed_priority) and any change at any flow
(changed_flow).
Two models have been designed, so-called Model 1 and Model 2. Model 1 includes all the variables related to flows in the

node. In contrast, Model 2 includes only a binary variable to indicate if any flow of the node has been changed, reducing the
number of variables.
Faults generated in the simulated network can be seen in Table 1. Most of these faults are injected into the network by pulling

flows being implemented in a node in XML format from Opendaylight, modifying these XML files according to the fault being
injected, and then pushing the XML file with a modified version of the flows initially pulled. We push these modified flows into
the operational database, as mentioned in Section 5.3. Specifically, this is the procedure for injecting faults S1 and S3 to S9. In
the case of the fault S2, the status of each link connecting a datacenter server to the network is switched to “down" using the
Mininet Python API.
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FIGURE 11 Topology of the simulated network.

Fault Type Description
S0 No faults - OK status
S1 Shutting down a node
S2 Disconnecting a datacenter server from the network
S3 Modifying the out-port rules in a node
S4 Modifying the in-port rules in a node
S5 Adding idle-timeouts in a node
S6 Adding hard-timeouts in a node
S7 Changing flow priorities in a node
S8 Forcing a node to drop Link Layer Discovery Protocol (LLDP) packets
S9 Modifying both out-port and in-port rules in a node

TABLE 1 Fault types and descriptions.

To test and to improve the performance of the reasoning process, we have tested two different algorithms for the learning
processes: Bayesian Search41, and Chow-Liu39 algorithms, using Genie42 and Pomegranate43 tools respectively. The Directed
Acyclic Graphs (DAGs) generated with these algorithms are shown in Figures 12, 13, 14 and 15.
These models have been validated using a balanced dataset with 561 fault diagnosis cases from the simulated network men-

tioned previously. The results obtained from both models can be seen in Tables 2, 3, 4 and 5. The comparison among all these
models can be seen in Table 6. The confusion matrices of each model can be seen in Tables 7, 8, 9 and 10.
Comparison between results of Model 1 (Tables 2 and 4) and Model 2 (Tables 3 and 5) shows there is a compromise between

faster pre-processing and effectiveness, as can be seen in S3, S7, and S9 faults. Thus, we can conclude a more-specific model, as
Model 1, shows better general results than Model 2, as shown in Table 6. Moreover, Model 1 significantly outstrips Model 2 and
Chow-Liu algorithm slightly surpasses the Bayesian Search algorithm. However, the Chow-Liu algorithm is significantly faster;
therefore, the advantage of using Chow-Liu over Bayesian Search is significant. A graphical representation of such results can
be seen in Figure 16.
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FIGURE 12 DAG for Switch Diagnosis - Model 1 using the Chow-Liu Algorithm39.
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FIGURE 13 DAG for Switch Diagnosis - Model 2 using the Chow-Liu Algorithm39.
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FIGURE 15 DAG for Switch Diagnosis - Model 2 using the Bayesian Search Algorithm41.
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Fault Type S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
F1-Score 0.91 0.95 0.99 0.94 0.97 0.92 0.91 0.92 0.93 0.96

Recall 0.99 0.91 1.00 0.89 0.94 0.85 1.00 0.84 0.89 0.92
Precision 0.85 1.00 0.99 1.00 1.00 1.00 0.83 1.00 0.97 1.00
Accuracy 0.95 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99

TABLE 2 Metrics for Model 1 using the Chow-Liu Algorithm.

Fault Type S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
F1-Score 0.91 1.00 0.99 0.00 0.43 0.92 0.95 0.00 0.93 0.00

Recall 0.98 1.00 1.00 0.00 0.94 0.85 1.00 0.00 0.89 0.00
Precision 0.85 1.00 0.98 0.00 0.28 1.00 0.91 0.00 0.97 0.00
Accuracy 0.95 1.00 0.99 0.92 0.79 0.99 0.99 0.92 0.99 0.93

TABLE 3 Metrics for Model 2 using the Chow-Liu Algorithm.

Fault Type S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
F1-Score 0.71 0.84 1.00 0.88 0.93 1.00 0.87 0.94 0.92 0.85

Recall 0.59 1.00 1.00 0.89 1.00 1.00 0.90 1.00 1.00 0.86
Precision 0.89 0.73 1.00 0.88 0.87 1.00 0.85 0.88 0.84 0.84
Accuracy 0.88 0.96 1.00 0.98 0.99 1.00 0.98 0.99 0.99 0.98

TABLE 4 Metrics for Model 1 using the Bayesian Search Algorithm.

Fault Type S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
F1-Score 0.80 0.83 1.00 0.37 0.00 0.92 0.93 0.00 0.89 0.00

Recall 0.84 0.72 1.00 0.89 0.00 0.85 0.94 0.00 0.87 0.00
Precision 0.77 0.97 1.00 0.24 0.00 1.00 0.92 0.00 0.92 0.00
Accuracy 0.90 0.97 1.00 0.75 0.92 0.99 0.99 0.91 0.99 0.94

TABLE 5 Metrics for Model 2 using the Bayesian Search Algorithm.

Model M1 - Chow-Liu M2 - Chow-Liu M1 - Bayesian Search M2 - Bayesian Search
F1-Score 0.939 0.613 0.894 0.574

Recall 0.922 0.666 0.924 0.610
Precision 0.963 0.599 0.877 0.581
Accuracy 0.987 0.948 0.975 0.934

TABLE 6 Results Summary.

7 CONCLUSIONS AND FUTURE WORK

The industry is adopting SDN technologies as a network management paradigm. SDN offers many benefits due to its agility and
flexibility for monitoring and configuring telecommunication networks.
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S7 S8 S9 S1 S2 S3 S4 S5 S6 S0
S7 38 0 0 0 0 0 0 0 0 7
S8 0 34 0 0 0 0 0 0 0 4
S9 0 0 33 0 0 0 0 0 0 3
S1 0 0 0 48 0 0 0 0 5 0
S2 0 0 0 0 66 0 0 0 0 0
S3 0 0 0 0 0 42 0 0 0 5
S4 0 0 0 0 0 0 44 0 0 3
S5 0 0 0 0 0 0 0 39 5 2
S6 0 0 0 0 0 0 0 0 49 0
S0 0 1 0 0 1 0 0 0 0 132

TABLE 7 Confusion Matrix for Model 1 using the Chow-Liu Algorithm.

S7 S8 S9 S1 S2 S3 S4 S5 S6 S0
S7 0 0 0 0 0 0 38 0 0 7
S8 0 34 0 0 0 0 0 0 0 4
S9 0 0 0 0 0 0 33 0 0 3
S1 0 0 0 53 0 0 0 0 0 0
S2 0 0 0 0 66 0 0 0 0 0
S3 0 0 0 0 0 0 42 0 0 5
S4 0 0 0 0 0 0 44 0 0 3
S5 0 0 0 0 0 0 0 39 5 2
S6 0 0 0 0 0 0 0 0 49 0
S0 0 1 0 0 1 0 0 0 0 132

TABLE 8 Confusion Matrix for Model 2 using the Chow-Liu Algorithm.

S7 S8 S9 S1 S2 S3 S4 S5 S6 S0
S7 45 0 0 0 0 0 0 0 0 0
S8 0 38 0 0 0 0 0 0 0 0
S9 0 0 31 0 0 0 0 0 0 5
S1 0 0 0 53 0 0 0 0 0 0
S2 0 0 0 0 66 0 0 0 0 0
S3 0 0 0 0 0 42 0 0 0 5
S4 0 0 0 0 0 0 47 0 0 0
S5 0 0 0 0 0 0 0 46 0 0
S6 0 0 0 5 0 0 0 0 44 0
S0 6 7 6 15 0 6 7 0 8 79

TABLE 9 Confusion Matrix for Model 1 using the Bayesian Search Algorithm.

In this article, we propose a Semantic Data Lake architecture which combines the features of Big Data technologies and
ontology-based data modeling, applying Bayesian reasoning as inference method for the Fault Diagnosis process. A semantic
description language for SDN environments, called SDNDL, has been proposed. Moreover, an existing Fault Diagnosis model
has been extended for our scenario, including symptoms and faults.
Finally, four causal models have been generated following different data processing criteria and learning algorithms. Their

evaluation showed that the more specific model (Model 1) has better accuracy than the model in which the number of collected
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S7 S8 S9 S1 S2 S3 S4 S5 S6 S0
S7 0 0 0 0 0 38 0 0 0 7
S8 1 33 0 0 0 0 0 0 0 4
S9 0 0 0 0 0 33 0 0 0 3
S1 5 0 0 38 0 0 0 0 0 10
S2 0 0 0 0 66 0 0 0 0 0
S3 0 0 0 0 0 42 0 0 0 5
S4 0 0 0 0 0 44 0 0 0 3
S5 0 1 0 0 0 0 0 39 4 2
S6 0 2 0 1 0 0 0 0 46 0
S0 2 0 0 0 0 20 0 0 0 112

TABLE 10 Confusion Matrix for Model 2 using the Bayesian Search Algorithm.

F1-Score Recall Precision Accuracy
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M1 - Chow-Liu M1 - Bayesian Search M2 - Chow-Liu M2 - Bayesian Search

FIGURE 16 Bar diagram representing the results summary.

variables has been reduced to improve performance in the data processing phase (Model 2). It also displayed that the Chow-Liu
algorithm shows better results in the diagnosis of network faults.
For future work, we propose to combine different diagnosis models to cope with more fault cases, not only focusing on switch

faults. This can be done by further processing more data sources, such as final user applications for specific service monitoring,
including probes in the network and servers or implementing testing agents which could execute specific tests when symptoms or
anomalies are detected in the network. Moreover, a distributed approach can be explored to allow communication and dialogue
between different network controllers. This is an interesting topic when data cannot be centralized in a unique data lake due to
legal or technical restrictions.
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